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ABSTRACT

Widely linear estimation for complex-valued signal processing is
growing in popularity, especially in the cases where the involved
signals exhibit non-circular characteristics. In this paper, the ex-
tended Wirtinger’s calculus in complex Reproducing Kernel Hilbert
Spaces (RKHS), presented in [1], is adopted to derive complex
kernel-based widely-linear estimation filters. Furthermore, we il-
luminate several important characteristics of widely linear filters,
which, to our knowledge, haven’t been considered before. Our re-
sults indicate that, in contrast to many cases where the gains from
adopting widely linear estimation filters, instead of ordinary linear
filters, are rudimentary, for the case of kernel-based widely linear
filters significant performance improvements can be obtained.

1. INTRODUCTION

Complex-valued signals arise frequently in many signal processing
applications. In contrast to the traditional splitting approach into
the real and imaginary parts, the complex domain provides a conve-
nient and elegant representation for these signals and also a natural
way to preserve their characteristics as well as to perform trans-
formations in an efficient way. Therefore, signal representations
using complex algebra are often met in the literature. However, in
many applications, one is often forced to make certain assumptions
for the complex signal in order to simplify the algebra. One such
assumption, which is commonly adopted, is the circularity of the
signal. Circularity is intimately related to rotation in the geometric
sense. A complex random variable, Z, is called circular, if for any

angle φ both Z and Zeiφ (i.e., the rotation of Z by angle φ ) follow
the same probability distribution [2, 3]. Naturally, this assumption
limits the area of applications, since many practical signals exhibit
non-circular characteristics. Thus, following the ideas originated
by Picinbono in [4, 5], on-going research is focusing on the widely
linear filters (or augmented filters) in the complex domain (see for
example [2, 3, 6–13]). The main characteristic of such filters is that
they exploit both the original signal as well as its conjugate ana-
logue.

On the other hand, kernel-based processing is another topic
that is gaining in popularity within the signal processing commu-
nity [14–21], as it provides an efficient toolbox for treating non-
linear problems, transforming them into a space of higher dimen-
sionality, possibly infinite, H . However, all the popular kernel-
based techniques were designed to process real data. Until recently,
no kernel-based methodology for treating complex signals had been
developed, in spite of their potential interest in a number of appli-
cations. Recently, in [1], a framework based on complex RKHS
was presented to solve this problem. Its main contributions are: a)
the development of a wide framework that allows real-valued kernel
algorithms to be extended to treat complex data effectively, taking
advantage of a technique called complexification of real RKHSs, b)
the elevation from obscurity of the pure complex kernels (such as
the complex Gaussian one) as a tool for kernel based adaptive pro-
cessing of complex signals and c) the extension of Wirtinger’s Cal-
culus in complex RKHSs, as a means for an elegant and efficient
computation of the gradients, which are involved in the derivation
of adaptive learning algorithms.

In this paper, we adopt the main concepts of widely linear esti-
mation, to develop kernel based widely linear adaptive filters using
the framework presented in [1]. Moreover, we illuminate certain as-
pects of widely linear estimation from a new perspective that sheds
light to why widely linear estimation is expected to perform better
than complex linear estimation. We demonstrate that, in the con-
text of pure complex kernels, adopting the widely linear filtering
structure leads to a significantly improved performance. In con-
trast, combining the widely linear structure with kernels that re-
sult from complexification of real kernels, does not enhance perfor-
mance, compared to that obtained with the ordinary kernel-based
filters. This is because complexification implicitly adds a conjugate
component to the model.

The paper is organized as follows. We start with a brief in-
troduction to complex RKHSs in Section 2, before we review the
framework of [1] in Section 3. The main notions of Wirtinger’s cal-
culus, which is mobilized to calculate the gradients of the respective
cost functions, are also presented there. In Section 4, we describe
the concept of widely linear estimation and show why this is better
than complex linear estimation. Finally, widely linear kernel based
adaptive filters are described in section 5. Experiments are provided
in section 6. Throughout the paper, we will denote the set of all inte-
gers, real and complex numbers by N, R and C respectively. Vector
or matrix valued quantities appear in boldfaced symbols.

2. PRELIMINARIES

Let X be a nonempty set. Then a function κ : X ×X → F, which
for all N ∈ N and all x1, . . . ,xN ∈ X gives rise to a positive definite
Gram matrix K, is called a Positive Definite Kernel. We can define
a RKHS [22] as a Hilbert space H over a field F for which there
exists a positive definite function κ : X ×X → F with the following
two important properties:

1. For every x ∈ X , κ(·,x) belongs to H .

2. κ has the so called reproducing property, i.e.,

f (x) = 〈 f ,κ(·,x)〉H , for all f ∈ H , (1)

in particular κ(x,y) = 〈κ(·,y),κ(·,x)〉H .

The map Φ : X → H : Φ(x) = κ(·,x) is called the feature map
of H . Recall, that in the case of complex Hilbert spaces (i.e., F=
C) the inner product is sesqui-linear (i.e., linear in one argument
and antilinear in the other) and Hermitian. In the real case, the
condition κ(x,y) = 〈κ(·,y),κ(·,x)〉H may be replaced by κ(x,y) =
〈κ(·,x),κ(·,y)〉H . However, since in the complex case the inner
product is Hermitian, the aforementioned condition is equivalent to
κ(x,y) = (〈κ(·,x),κ(·,y)〉H )∗.

Although, the underlying theory has been developed by the
mathematicians for general complex reproducing kernels and their
associated RKHSs, it is the real kernels that have been consid-
ered by the machine learning and signal processing communi-
ties. Some of the most widely used kernels in the literature are
the Gaussian Radial Basis Function (RBF), i.e., κσ ,Rd (x,y) :=

exp
(

−∑d
i=1(xi −yi)

2/σ2
)

, defined for x,y ∈ Rd , where σ is a

free positive parameter, and the polynomial kernel: κd(x,y) :=
(

1+xT y
)d

, for d ∈ N. Many more can be found in [23, 24].



There are many complex reproducing kernels, that have been
extensively studied by the mathematicians (see for example [25]).
Here we focus our attention on the complex Gaussian kernel, which
is defined as follows:

κσ ,Cd (z,w) := exp

(

−∑d
i=1(zi −w∗

i )
2

σ2

)

, (2)

where z,w ∈ Cd , zi denotes the i-th component of the complex

vector z ∈ Cd and exp is the extended exponential function in the
complex domain. Its restriction, κσ :=

(

κσ ,Cd

)

|Rd×Rd , is the well

known real Gaussian kernel. An explicit description of the RKHSs
of these kernels can be found in [26].

3. KERNEL PROCESSING IN COMPLEX RKHS

To generate kernel adaptive filtering algorithms on complex do-
mains, according to [1], one can adopt two methodologies. A first
straightforward approach is to use directly a complex RKHS, using
one of the complex kernels and map the original data to the complex
RKHS through the associated feature map Φ(z) = κ(·,z). Another
alternative technique is to use real kernels through a rationale that
is called complexification of real RKHSs. This method has the ad-
vantage of allowing modeling in complex RKHSs, using popular
well-established and well understood, from a performance point of
view, real kernels (e.g., gaussian, polynomial, etc.).

Let X ⊆ R
ν . Define X2 ≡ X ×X ⊆ R

2ν and X= {x+ iy,x,y ∈
X} ⊆ Cν equipped with a complex product structure. Let H be

a real RKHS associated with a real kernel κ defined on X2 × X2

and let 〈·, ·〉H be its corresponding inner product. Then, every f ∈
H can be regarded as a function defined on either X2 or X, i.e.,

f (z) = f (x+ iy) = f (x,y). Next, we define H 2 = H ×H . It is

easy to verify that H 2 is also a Hilbert Space with inner product
〈 f ,g〉H 2 = 〈 f1,g1〉H + 〈 f2,g2〉H , for f = ( f1, f2), g = (g1,g2).
Our objective is to enrich H 2 with a complex structure. To this
end, we define the space H= { f = f1 + i f2; f1, f2 ∈ H } equipped
with the complex inner product: 〈 f ,g〉H = 〈 f1,g1〉H +〈 f2,g2〉H +
i(〈 f2,g1〉H −〈 f1,g2〉H ), for f = f1 + i f2, g = g1 + ig2. Hence,
f ,g : X ⊆ Cν → C. It is not difficult to verify that H is a complex
RKHS with kernel κ [25]. We call H the complexification of H .
It can readily be seen, that, although H is a complex RKHS, its
respective kernel is real (i.e., its imaginary part is equal to zero).

To complete the presentation of the required complexification
framework, we need a technique to implicitly map the data samples
from the complex input space to the complexified RKHS H. This

can be done using the simple rule: Φ̂(z) = Φ̂(x+ iy) = Φ̂(x,y) =
Φ(x,y)+ iΦ(x,y), where Φ is the feature map of the real reproduc-
ing kernel κ , i.e., Φ(x,y) = κ(·,(x,y)). It must be emphasized, that

Φ̂ is not the feature map associated with the complex RKHS H. Fur-
thermore, the intersting point is that in spite of the fact that the space
is a complex one, the “generating” kernel is a real one. Therefore,
the algorithms derived using this approach cannot be reproduced,
if one blindly applies the kernel trick and replaces complex inner
products in a linear algorithm, that works directly on the data in the
input space, in order to kernelize it [1].

3.1 Wirtinger’s Calculus in complex RKHS

Wirtinger’s calculus [27] was brought into light recently [2–4, 7,
28, 29], as a means to compute, in an efficient and elegant way,
gradients of real valued cost functions that are defined on complex
domains (Cν ). It is based on simple rules and principles, which bear
a great resemblance to the rules of the standard complex derivative,
and it greatly simplifies the calculations. The difficulty with real
valued cost functions is that they do not obey the Cauchy-Riemann
conditions and are not diffirentiable in the complex domain. The
alternative to Wirtinger’s calculus would be to consider the complex
variables as pairs of two real ones and employ the common real

partial derivatives. However, this approach, usually, is more time
consuming and leads to more cumbersome expressions.

In [1], the notions of Wirtinger’s calculus was extended to gen-
eral complex Hilbert spaces, providing the tool to compute the gra-
dients that are needed to develop kernel-based algorithms for treat-
ing complex data. This extension uses mainly the notion of the
Fréchet differentiability, which generalizes differentiability to gen-
eral Hilbert spaces. However, due to lack of space, in this section
we give only the definitions and the main results that will be used
to derive the widely linear kernel-based estimation filters. The in-
terested reader may find more on the subject in [1, 30].

Consider the function T : A ⊆ H → C, T ( f ) = T (u f + iv f ) =
Tr(u f ,v f )+ iTi(u f ,v f ), defined on an open subset A of H, where

u f ,v f ∈ H and Tr,Ti are real valued functions defined on H
2.

Any such function, T , may be regarded as defined either on a

subset of H, or on a subset of H
2. Moreover, T may be re-

garded either as a complex valued function, or as a vector valued

function, which takes values in R
2. Therefore, we may equiv-

alently write: T ( f ) = T (u f + iv f ) = Tr(u f ,v f ) + iTi(u f ,v f ), or

T ( f ) =
(

Tr(u f ,v f ),Ti(u f ,v f )
)T

.
We define the Fréchet Wirtinger’s gradient (or W-gradient for

short) and the Fréchet conjugate Wirtinger’s gradient (or CW-
gradient for short) of T at c as follows:

∇ f T (c) =
1

2
(∇1T (c)− i∇2T (c)) =

1

2
(∇uTr(c)+∇vTi(c))

+
i

2
(∇uTi(c)−∇vTr(c)) , (3)

∇ f ∗T (c) =
1

2
(∇1T (c)+ i∇2T (c)) =

1

2
(∇uTr(c)−∇vTi(c))

+
i

2
(∇uTi(c)+∇vTr(c)) . (4)

The rules of the generalized calculus can be found in [1, 30]. Here
we focus our interest to the following two simple properties:

1. If T ( f ) = 〈 f ,w〉H, then ∇ f T (c) = w∗, ∇ f ∗T (c) = 0, for every
c.

2. If T ( f ) = 〈 f ∗,w〉H, then ∇ f T (c) = 0, ∇ f ∗T (c) = w∗, for every
c.

In [1], the aforementioned toolbox was employed in the context
of the complex Least Mean Square (LMS) algorithm and two real-
izations of the complex kernel LMS algorithm were developed. The
first one, which will be denoted here as NCKLMS1 adopts the com-
plexification procedure and the second one, which will be denoted
as NCKLMS2 uses the complex gaussian kernel.

4. WIDELY LINEAR ESTIMATION FILTERS

In this paper, our attention is focussed on the widely linear esti-
mation filters, or augmented filters, as they are also known. These
filters take into account both the original values of the signal data
as well as their conjugates. For example, in a typical LMS task,

we estimate the output as d̂(n) = wHz(n) and the step update as

w(n) = w(n−1)+µe∗(n)z(n). In this case, d̂(n) is provided as the
output of a linear estimation filter. However, the linearity property is
taken with respect to the field of complex numbers. Picinbono and
Chevalier, in [4], proposed an alternative approach. They estimated

the filter’s output as d̃(n) = wHz+vH z∗ and showed that it provides
better results in terms of the mean square error. This, of course, is

expected since d̃(n) provides a more rich representation than d̂(n).
On the other hand, d̃(n) is no longer linear over the field C. It is
linear, however, over the real numbers R. To emphasize this dif-

ference, in the relative literature d̂(n) is often called C-linear, while

d̃(n) is called R− linear.
In [4, 6, 31], it is shown that the widely linear estimation filter

is able to capture the second order statistical characteristics of the
signal which are essential, especially for non-circular sources. Al-
though in many relative works this is highlighted as the main reason



for adopting widely linear techniques, in this paper, we will high-
light a different perspective.

Our starting point will be the definition of linearity, in its strict
mathematical sense. To this end, let us first clarify, that complex
processing is equivalent with processing two real signals in the re-
spective Euclidean (Hilbert) spaces. The advantage of using com-
plex algebra is that the algorithm and/or the solution may be de-
scribed in a more compact form. Moreover, the complex algebra
allows for a more intuitive understanding of the problem, as many
geometric transformations can be easily described using complex
algebra in an elegant way. Finally, the application of Wirtinger’s
calculus greatly simplifies the calculations needed for the gradients
of real valued cost functions.

Having this in mind, we now turn our attention to a typical com-
plex LMS task. Let z(n) ∈ Cν and d(n) ∈ C be the input and the
output of the original filter. We estimate the output of the filter us-

ing a C-linear response d̂(n) = wHz(n). The typical complex LMS

task aims to compute w ∈ Cν , such that the error |d(n)− d̂(n)|2 is
minimized. If we set w = wr + iwi and z = x+ iy, we take that

d̂(n) = wT
r x+wT

i y+ i(wT
r y−wT

i x). (5)

However, the real essence behind a complex filter operation is
the following: Given two real vectors, x(n) and y(n), compute linear
filters in order to estimate two new real processes, dr(n) and di(n),
in an optimal way, that jointly cares for both dr(n) and di(n). Let
us express the problem in its multichannel formulation, using real
variables only, i.e.,

(

d̃r(n)
d̃i(n)

)

=

(

uT
1,1 uT

1,2

uT
2,1 uT

2,2

)

·
(

x
y

)

≡U ·
(

x
y

)

From a mathematical point of view, this is the definition of a

linear operator from R2ν → R2. The elements of U are computed

such that both |dr(n)− d̃r(n)|2 and |di(n)− d̃i(n)|2 are jointly min-
imized. This leads to the so called Dual Real Channel (DRC) for-
mulation. Thus, we take the relations d̃r(n) = uT

1,1x + uT
1,2y and

d̃i(n) = uT
2,1x + uT

2,2y. In complex notation, if we consider that

d̃(n) = d̃r(n)+ id̃i(n), we obtain the expression

d̃(n) = uT
1,1x+uT

1,2y+ i
(

uT
2,1x+uT

2,2y
)

. (6)

It is easy to see that the DRC approach expressed by relation (6)
adopts a richer representation than that of the traditional LMS in
(5). Moreover, it takes a few lines of elementary algebra to derive
that an equivalent expression of (6) is the widely linear estimation
filter. This will be our kick off point to define the task in a general

Hilbert space. In general, we can prove the following1:

Proposition 1. Consider a real2 Hilbert space H and let the real

Hilbert space H 2 and the complex Hilbert space H be defined as in

section 3. Then any linear function T : H 2 → R2 can be expressed
in complex notation as

T (x,y) = T (x+ iy) = T (z) = 〈z,w〉H+ 〈z∗,v〉H , (7)

for some w,v ∈ H, where 〈·, ·〉H is the respective inner product of
H.

Remark 1. In view of proposition 1, one understands that the orig-
inal formulation of the complex LMS was unorthodox, as it excludes
a large class of linear functions from being considered in the esti-
mation process. It is evident, that the linearity with respect to the
field of complex numbers is restricted, compared to the linearity that
underlies the DRC approach, which is more natural. Thus the cor-
rect complex linear estimation is T (z) = 〈z,w〉H + 〈z∗,v〉H rather
than T (z) = 〈z,w〉H.

1The proof is omitted due to lack of space. It will be presented elsewhere.
2By the term real (complex) Hilbert space, we mean a Hilbert space over

the field of real numbers R (complex numbers C).

5. WIDELY LINEAR ESTIMATION IN COMPLEX RKHS

In this section, we will develop several realizations of the Aug-
mented Complex Kernel LMS (ACKLMS) algorithm using either
pure complex kernels, or real kernels under the complexification
trick. We show that ACKLMS offers significant improvements ver-
sus complex kernel LMS (CKLMS), when the complex gaussian
kernel is employed. On the other hand, as we will see, the CKLMS
that is developed around the complexification trick, implicitly in-
cludes the augmented estimation, as it is directly associated with
the DRC approach. Therefore, its augmented version degenerates
to the standard CKLMS.

Consider the sequence of examples (z(1),d(1)), (z(2),d(2)),
. . . , (z(N),d(N)), where d(n) ∈ C, z(n) ∈ Cν , z(n) = x(n)+ iy(n),
x(n),y(n) ∈ Rν , for n = 1, . . . ,N. Consider, also, a real RKHS H

and let the real Hilbert space H 2 and the complex Hilbert space H

be defined as in section 3. The straightforward method that one may
apply in order to derive a widely linear estimation filter in H, is:

d̃(n) = 〈Φ(z(n)),w(n−1)〉
H
+ 〈Φ∗(z(n)),v(n−1)〉

H
, (8)

where Φ is an appropriate function that maps the input data to the
feature space H. This is equivalent with transforming the data to
a complex RKHS and applying a widely linear complex LMS to
the transformed data. The objective of the ACKLMS is to estimate,

w and v, so that to minimize E [Ln(w)], where Ln(w) = |e(n)|2 =
∣

∣d(n)− d̃(n)
∣

∣

2
, at each time instance n.

Applying the rules of Wirtinger’s calculus in complex RKHS,

we can easily deduce that
∂L (n)

∂ w∗ = −Φ(z(n)) · e∗(n), ∂L (n)
∂ v∗ =

−Φ∗(z(n)) · e∗(n). Thus, the step updates of the ACKLMS are

w(n) = w(n−1)+µΦ(z(n))e∗(n),

v(n) = v(n−1)+µΦ∗(z(n))e∗(n).

Assuming that w(0) = v(0) = 0, the repeated application of the
weight-update equations gives:

w(n−1) = µ
n−1

∑
k=0

Φ(z(n))e∗(n), (9)

v(n−1) = µ
n−1

∑
k=0

Φ∗(z(n))e∗(n). (10)

Combining (8), (9) and (10) leads to

d̃(n) = µ
n−1

∑
k=1

e(k)〈Φ(z(n)),Φ(z(k))〉
H
+µ

n−1

∑
k=1

e(k)〈Φ∗(z(n)),Φ∗(z(k))〉
H
.

(11)

5.1 Complexified ACKLMS

Recall that in the complexification trick, the associated function

that maps the data to H is given by Φ̂(z) = Φ(x,y) + iΦ(x,y) =
κR(·,(x,y))+ iκR(·,(x,y)), where Φ is the feature map of H and
κR its respective real kernel. Under this condition, the filter output
at iteration n takes the form

d̃(n) = 4µ
n−1

∑
k=1

e(k) ·κR ((x(k),y(k)),(x(n),y(n))) . (12)

This is exactly the same solution as in the complexified CKLMS
(except a rescaling). Thus, we deduce that the standard complexi-
fied CKLMS presented in [1] and the augmented CKLMS are iden-
tical.
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Figure 1: Learning curves for CKLMS2 (µ = 1/4), NACKLMS,
(µ = 1/4), CLMS (µ = 1/16) and widely linear CLMS (µ = 1/16)
(filter length L = 5, delay D = 2) for the soft nonlinear channel
equalization problem, for (a) the circular input case, (b) the non-
circular input case (ρ = 0.1).

5.2 ACKLMS with pure complex kernels

For the case of a pure complex kernel κC, the filter output becomes

d̃(n) = µ
n−1

∑
k=1

e(k)κC(z(k),z(n))+µ
n−1

∑
k=1

e(k)κ∗
C(z(k),z(n)), (13)

as 〈Φ(z),Φ(c)〉
H
= κC(z,c), for any z,c ∈ Cν . In this case, it is

evident that the ACKLMS will give different solution to CKLMS,
as it exploits a richer representation.

6. EXPERIMENTS

A normalized version of the Augmented CKLMS algorithm (de-
noted here as NACKLMS) was developed. Its performance has been
tested in the context of a nonlinear channel equalization task. As in
[1], two nonlinear channels have been considered. The first channel
(labeled as soft nonlinear channel in the figures) consists of a linear
filter: t(n) = (−0.9+0.8i) ·s(n)+(0.6−0.7i) ·s(n−1) and a mem-

oryless nonlinearity q(n) = t(n) + (0.1+ 0.15i) · t2(n) + (0.06+
0.05i) · t3(n). The second one (labeled as strong nonlinear channel
in the figures) comprises the same linear filter and the nonlinearity:

q(n) = t(n)+(0.2+0.25i) · t2(n)+(0.12+0.09i) · t3(n). These are
standard models, that have been extensively used in the literature
for such tasks [15]. At the receiver end of the channels, the signal is
corrupted by white Gaussian noise and then observed as r(n). The
level of the noise was set to 16dB. The input signal that was fed to

the channels had the form s(n) = 0.70
(

√

1−ρ2X(n)+ iρY (n)
)

,

where X(n) and Y (n) are gaussian random variables. This input is

circular for ρ =
√

2/2 and highly non-circular if ρ approaches 0 or
1 [2].

The aim of a channel equalization task is to construct
an inverse filter, which acts on the output r(n) and repro-
duces the original input signal as closely as possible. To this
end, we apply the NACKLMS algorithm to the set of samples
((r(n+D),r(n+D−1), . . . ,r(n+D−L+1)),s(n)), where L > 0
is the filter length and D the equalization time delay, which is
present to, almost, any equalization set up.

Experiments were conducted on a set of 5000 samples of the in-
put signal considering both the circular and the non-circular cases.
The results are compared with the NCLMS and the NACLMS (i.e.,
augmented NCLMS or widely linear NCLMS as it is also known)
algorithms and with two adaptive nonlinear algorithms: a) the Com-
plex non-linear Gradient descent (CNGD) algorithm [3] and a Multi
Layer Perceptron (MLP) with 50 nodes in the hidden layer (pro-
posed in [2]). In both cases, the complex tanh activation func-
tion was employed. For the case of the MLP, the design was also
tuned so that the best possible results were obtained. Time delay
D was set for optimality. Figure 1, shows the learning curves of
the normalized CKLMS2 (NCKLMS2) and NACKLMS using the

complex Gaussian kernel κσ ,Cd (z,w) := exp
(

−∑d
i=1(zi−w∗

i )
2

σ2

)

(with

σ = 5), together with those obtained from the NCLMS and the NA-
CLMS algorithms. We observe that the performance of NACKLMS
and NCKLMS1 is similar, with the latter one leading to a smaller
MSE value for that particular problem. Figure 2 shows the learning
curves of NCKLMS2 and NACKLMS versus the CNGD and the
L-50-1 MLP for the hard non-linear channel.

The novelty criterion (see [1], [14]) was used for the sparsifica-
tion of the NCKLMS2 and NACKLMS with δ1 = 0.1 and δ2 = 0.2.
In both examples, NACKLMS considerably outperforms the linear,
widely linear (i.e., NCLMS and NACLMS) and nonlinear (CNGD
and MLP) algorithms (see figures 1, 2). The NACKLMS also ex-
hibits improved performance compared to the NCKLMS2 for non-
circular input sources. Moreover, observe that while the gains of the
ACLMS over CLMS are rather rudimentary (smaller than 0.2 dB),
the gains of NACKLMS over NCKLMS2 are significant (approxi-
mately 2dB). For circular signals, the two models (NCKLMS2 and
NACKLMS) lead to almost identical results, as expected [4, 5].
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